x = # of balcony seats
y = # of orchestra seats
We have to create a system of equations to solve this problem
x + y = 256
$8x + $12y = $2,716
We will solve this system of equations by elimination.
Multiply the first equation by -8
-8x - 8y = -2048
8x + 12y = 2716
Let's add the equations together
0 + 4y = 668
Simplify the left side
4y = 668
Divide both sides by 4
y = 167
We can subtract 167 from 257 to get the number of balcony seats.
257 - 167 = 90 balcony seats
There are 167 orchestra seats and 90 balcony seats
Answer:
Option A. 5
Step-by-step explanation:
From the question given above, the following data were obtained:
First term (a) = –3
Common ratio (r) = 6
Sum of series (Sₙ) = –4665
Number of term (n) =?
The number of terms in the series can be obtained as follow:
Sₙ = a[rⁿ – 1] / r – 1
–4665 = –3[6ⁿ – 1] / 6 – 1
–4665 = –3[6ⁿ – 1] / 5
Cross multiply
–4665 × 5 = –3[6ⁿ – 1]
–23325 = –3[6ⁿ – 1]
Divide both side by –3
–23325 / –3 = 6ⁿ – 1
7775 = 6ⁿ – 1
Collect like terms
7775 + 1 = 6ⁿ
7776 = 6ⁿ
Express 7776 in index form with 6 as the base
6⁵ = 6ⁿ
n = 5
Thus, the number of terms in the geometric series is 5.
Answer: (x,y) -> (7/4x, 7/4y)
Step-by-step explanation:
Answer:
The COP is 0.5
Step-by-step explanation:
First we must find the slopes.
12.50/25 = 0.5
17.50/35 = 0.5
The COP is 0.5