Answer:
<h2>470.59 kg</h2>
Explanation:
The the mass of the car can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>470.59 kg</h3>
Hope this helps you
Yes. On a circular path, the direction of motion is constantly changing. Change of direction is acceleration, even at constant speed.
Answer: It's hard to say without characterizing the collision. But it will be either A if the collision is totally in-elastic, or B if the collision is totally elastic. It could be anywhere in between for partially elastic collisions.
Explanation:
momentum is conserved, so initial system momentum will be left to right.
The velocity of the center of mass is 50(5) / 550 = 0.4545... m/s
In an elastic collision, the lead ball will move off at twice that speed or 0.91 m/s to the right.
The steel ball will bounce back and move away at 0.91 - 5 = -4.1 m/s . The negative sign indicates the steel ball has reversed course and has negative momentum
In a totally in-elastic collision, both balls would move to the right at 0.45 m/s. The steel ball will still have positive momentum.
Answer:
Explanation:
mg = kx
x = mg/k
x = 30(80)(9.8)/2.8e7 = 0.00084 m ≈ 1 mm
Answer:
The options are not shown, so i will answer in a general way.
Suppose the case where the forces act in opposite directions, then we need to subtract the forces, and we know that the magnitude of the resultant force will be:
60N - 50N = 10N
Now, suppose the case where both forces act in the exact same direction, in that case, we will add the forces to get:
60N + 50N = 110N
Then the only range of forces that we can get in this system, are the forces such:
10N ≤ F ≤ 110N
Any resultant force outside that range is not possible in this situation.