a)
because it is equal to the area of the shaded region between X=4 and X=6, and the probability that X falls within some interval is given by the area under the PDF.
b)
because the shaded region is a rectangle of height 1/5 (by virtue of X following a uniform distribution over the interval [2, 7], which has length 5).
Answer:
x=(3,1/4)
Step-by-step explanation:
Be sure to use the formula...
- First, move all variables to one side (left) of the equation. You want one side to be equivalent to zero.
-Next, you need to find a, b, and c. This should be...
a=4
b=-13
c=3
- Knowing this, fill in these variable to go along with the formula. I cannot do this for you, as you should try it on your own. But, you should end up with the solution x= (3,1/4).
- Hope this helps! If you need a further explanation or help on any more problems please let me know, as I would be glad to help anytime.
Answer:
Step-by-step explanation:
Area = length * width
length: x + 3
width: x - 5
A = (x + 3)(x - 5)
Simplify (x + 3)(x - 5) using the FOIL method:
1. First numbers: multiply the first number of each binomial together--x*x = x%5E2
2. Outer numbers: multiply the outer number of each binomial (out of the entire expression, the number farthest to the left (x) and the number farthest to the right (-5))--x*-5 = -5x
3. Inner numbers: multiply the inner number of each binomial--3*x = 3x
4. Last numbers: multiply the last number of each binomial--3*-5 = -15
==> Now, add all of the results together and combine like terms: x%5E2+-+5x+%2B+3x+-+15 = x%5E2+-+2x+-+15
Therefore, A = x%5E2+-+2x+-+15
Answer:
The answer to your question is these lines are not perpendicular.
Step-by-step explanation:
Data
A (4, 2)
B (-1, 4)
slope = m = 4
Perpendicular lines mean that these lines cross and form an angle of 90°. Also, the slope of perpendicular lines is negative reciprocals.
Process
1.- Find the slope of the second line and compare it to the slope given.
slope = 
Substitution
slope = 
Simplification and result
slope = 
-2/5 is not a negative reciprocal of 4, so these lines are not perpendicular.