The slope is a 2
here the stpes
6/3 got 2
y2-ya
x2-x1
then you get 6/3 devide ad that you slope
Answer:
The student incorrectly used the Distributive property!
Step-by-step explanation:
The Distributive property says a(b+c)=ab+ac
In this problem the answer SHOULD be 3n-15, however the <u>student forgot to distribute the 3 to the -5</u>!
Answer:
It is proved that
.
Step-by-step explanation:
We already have the identity of x as
.......... (1) .
So, from equation (1) we can write that

⇒ 
⇒ 
⇒
Hence, it is proved that
. (Answer)
This is a common factor problem.
Pencils come in a pack of 12
Erasers come in a pack of 10
First, break the number into their prime factors(the idea is that we will break the number down into its smallest multiples, which are prime numbers):
10 = 2 * 5
12 = 2 * 2 *3
So now we take the unique multiples of each number, and when we multiply them together, we will get the smallest number that both 10 and 12 can be divided into(this is what the problem is asking for)
We have (2*2*3) that comes from 12, and the only unique number that comes from the 10 is (5)
So now, we multiply:
2*2*3*5=60
However, this isn't exactly out answer. Now we have to divide our answer by the number of each this in the pack to know how many packs to buy.
60/12=5 packs of pencils
60/10= 6 packs of erasers
I hope this helps. Let me know if you have any questions!!
Answer:
* The mean (a measure of central tendency) weight value is the average of the weights of all pennies in the study.
* The standard deviation (a measure of variability or dispersion) describes the lowest and highest any individual penny weight can be. Subtracting 0.02g from the mean, you get the lowest penny weight in the group.
Step-by-step explanation:
Recall that a penny is a money unit. It is created/produced, just like any other commodity. As a matter of fact, almost all types of money or currency are manufactured; with different materials ranging from paper to solid metals.
A group of pennies made in a certain year are weighed. The variable of interest here is weight of a penny.
The mean weight of all selected pennies is approximately 2.5grams.
The standard deviation of this mean value is 0.02grams.
In this context,
* The mean (a measure of central tendency) weight value is the average of the weights of all pennies in the study.
* The standard deviation (a measure of variability or dispersion) describes the lowest and highest any individual penny weight can be. Subtracting 0.02g from the mean, you get the lowest penny weight in the group.
Likewise, adding 0.02g to the mean, you get the highest penny weight in the group.
Hence, the weight of each penny in this study, falls within
[2.48grams - 2.52grams]