Answer:
The nswer to the question is
The maximum fraction of the air in the room that could be displaced by the gaseous nitrogen is 0.548 or 54.8 %
Explanation:
To solve the question we note that
The density of the liquid nitrogen = 0.808g/mL and the volume is 195 L tank (vaporised)
Therefore since density = mass/volume we have
mass = Density × volume = 0.808 g/mL × 195 L × 1000 ml/L =157560 g
In gaseous form the liquid nitrogen density =1.15 g/L
That is density = mass/volume and volume = mass/density = 157560 g/(1.15g/L) or
volume = 137008.69565 L
The dimension of the room = 10 m × 10 m × 2.5 m = 250 m³ and
1 m³ is equivalent to 1000 L, therefore 250 m³ = 250 m³ × 1000 L/m³ = 250000L
Therefore fraction of the volume occupied by the gaseous nitrogen =
137008.69565 L/250000 L = 0.548
Therefore the gaseous nitrogen occpies 54.8% of the room
Photons may be generated by the transition of an electron from one energy level in an atom or molecule to a lower energy level. Photons may be absorbed as they cause an electron to be raised from a lower energy level to a higher energy level (in an atom or molecule).
The photon itself does not undergo a transition of energy: it either exists (with an energy defined by its wavelength), or it doesn't exist (it was destroyed!). You could say that the emitting or absorbing atom/molecule/etc. undergoes a change, or transition, in energy. But "transition" is usually used as a name for the process of jumping in energy.
Hope it help
Answer:
1.26 x 10⁸pm³ and 1.26 x 10⁻²²cm³
Explanation: Calculating for a body centered cubic lattice, the formula is
3d²= 16r²
where d = edge length of unit cell
r=radius of atom
3d²= 16 x (217)²
3d²=753424
d²=251141.3
d= 501.1pm
volume of unit cell= d³= (501.1)³= 1.26 x 10⁸pm³
converting to cm³= 1.26 x 10⁸(10⁻¹²m)³
=1.26 x 10⁸(10⁻¹⁰cm)³ = 1.26 x 10⁻²²cm³
Answer:
The concentration of hydroxide ions in a 3.5 is
C. 10.5
Answer:
<h2>3.31 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 23.2 g
volume = final volume of water - initial volume of water
volume = 62 - 55 = 7 mL
We have

We have the final answer as
<h3>3.31 g/mL</h3>
Hope this helps you