Answer:
A model or simulation is only as good as the rules used to create it. It is very difficult to create an entirely realistic model or simulation because the rules are based on research and past events. The main disadvantage of simulations is that they aren't the real thing.
Explanation:
Answer:
Option c and d
Explanation:
John Dalton. In 1808, John Dalton proposed a theory known as Dalton’s Atomic Theory. The theory was published in a paper titled “A New Chemical Philosophy”. This theory was new to that era
The 5 postulates of Daltons' atomic theory are:
1. All the matters are made of atoms.
2. Atoms of different elements combine to form compounds
3. Compounds contain atoms in small whole-number ratios
4. Atoms can neither be created nor destroyed
. (This was later proven wrong )
5. All atoms of an element are identical and have the same properties (This was later proven wrong as atoms of same element may be different in case of elements having isotopes )
Therefore, options c and d are the answer.
Answer:
<u></u>
Explanation:
<u>1. Balanced molecular equation</u>

<u>2. Mole ratio</u>

<u>3. Moles of HNO₃</u>
- Number of moles = Molarity × Volume in liters
- n = 0.600M × 0.0100 liter = 0.00600 mol HNO₃
<u>4. Moles Ba(OH)₂</u>
- n = 0.700M × 0.0310 liter = 0.0217 mol
<u>5. Limiting reactant</u>
Actual ratio:

Since the ratio of the moles of HNO₃ available to the moles of Ba(OH)₂ available is less than the theoretical mole ratio, HNO₃ is the limiting reactant.
Thus, 0.006 moles of HNO₃ will react completely with 0.003 moles of Ba(OH)₂ and 0.0217 - 0.003 = 0.0187 moles will be left over.
<u>6. Final molarity of Ba(OH)₂</u>
- Molarity = number of moles / volume in liters
- Molarity = 0.0187 mol / (0.0100 + 0.0031) liter = 0.456M