All chemical reactions have a conversation of mass and energy.
Because:- There are only two laws for conversation in a chemical reaction. The conversation of mass, no mass can be created nor destroyed. Also, the law of conversation of mass states that no energy can be created nor destroyed in a chemical reaction. The charge can obviously change because they can bond and change charges.
Fireworks owe their colors to reactions of combustion of the metals present. When Mg and Al burn, they emit a white bright light, whereas iron emits a gold light. Besides metals, oxygen is necesary for the combustion. The decomposition reactions of barium nitrate and potassium chlorate provide this element. At the same time, barium can burn emitting a green light.
(a) Barium nitrate is a <em>salt</em> formed by the <em>cation</em> barium Ba²⁺ and the <em>anion</em> nitrate NO₃⁻. Its formula is Ba(NO₃)₂. Potassium chlorate is a <em>salt</em> formed by the <em>cation</em> potassium K⁺ and the <em>anion</em> chlorate ClO₃⁻. Its formula is KClO₃.
(b) The balanced equation for the decomposition of potassium chloride is:
2KClO₃(s) ⇄ 2KCl(s) + 3O₂(g)
(c) The balanced equation for the decomposition of barium nitrate is:
Ba(NO₃)₂(s) ⇄ BaO(s) + N₂(g) + 3O₂(g)
(d) The balanced equations of metals with oxygen to form metal oxides are:
- 2 Mg(s) + O₂(g) ⇄ 2 MgO(s)
- 4 Al(s) + 3 O₂(g) ⇄ 2 Al₂O₃(s)
- 4 Fe(s) + 3 O₂(g) ⇄ 2 Fe₂O₃(s)
<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>
Isotopes of same element has different number of neutrons with different masses and having same number of protons and electrons.
Radioactive isotopes are those isotopes which are radioactive in nature. The unstable nucleus results in the radioactivity process and this process will go on until the stable isotope (element) forms.
Thus, the nucleus of unstable isotopes of an element will decay leading to emission of radiation.