In nuclear fission heavier elements are split to make lighter elements whilst releasing energy. An atom, its nucleus to be more specific, is bombarded with neutrons. The nucleus becomes unstable and it starts to split/decay. It creates the fusion products. Neutrons and lighter elements are released; the neutrons from the nuclei of the atom(s) being split.
Answer: B) The fireworks give off heat
The earths gravity attracts the molecules and collects the most near the surface. They all have weight and therefore have more pressure at the surface, as well. As you go higher, the attraction becomes less and these molecules some times fly off into space. This layer of equilibrium has the least of weight or pressure.
The various pressures are measured by precision instruments called barometers or pressure sensors and expressed in inches of mercury or millibars. <span>Air has a weight too, although not very much, If you "pile" the air mile high, the bottom pressure is heavier because of all the air sitting on top of it, therefore the pressure decreases with altitude, because there is less air "piled up" </span>
<span>An analogy would be the same with water.</span>
Planes have these instruments that tells the crew the altitude above sea level they are at when flying.
In order to determine the concentration of ammonium ions in
the solution prepared by mixing solutions of ammonium sulfate, (NH4)2SO4, and ammonium
nitrate, first calculate the amount of ammonium ions for each solution.<span>
<span>For ammonium sulfate sol'n: 0.360 L x 0.250 mol(NH4)2SO4/ L x 2 mol NH4+ /1 mol(NH4)2SO4 =
0.18 mol NH4+
<span>For ammonium nitrate sol'n: 0.675 x 1.2 mol NH4NO3/L x 1 mol NH4+ /1 molNH4NO3
= 0.81 mol NH4+
Thus, the amount of NH4+ ions is (0.18 + 0.81) mol or 0.99
mol NH4+. To get the concentration, multiply this to the volume of solution
which is assumed to be additive, such that:</span></span></span>
M NH4+ in sol’n = 0.99 mol NH4+/1.035 L = 0.9565 mol NH4+/ L
sol’n
Answer:
Option C. Triple the number of moles
Explanation:
From the ideal gas equation:
PV = nRT
Where:
P is the pressure
V is the volume
n is the number of mole
R is the gas constant
T is the absolute temperature.
Making V the subject of the above equation, we have:
PV = nRT
Divide both side by P
V = nRT / P
Thus, we can say that the volume (V) is directly proportional to both the number of mole (n) and absolute temperature (T) and inversely proportional to the pressure (P). This implies that and increase in either the number of mole, the absolute temperature and a decrease in the presence will cause the volume to increase.
Thus, the correct option is option C triple the number of moles. This can further be seen as illustrated below:
Initial volume (V1) = 12 L
Initial mole (n1) = 0.5 mole
Final mole (n2) = triple the initial mole = 3 × 0.5 = 1.5 mole
Final volume (V2) =?
From:
V = nRT / P, keeping T and P constant, we have:
V1/n1 = V2/n2
12/0.5 = V2/1.5
24 = V2/1.5
Cross multiply
V2 = 24 × 1.5
V2 = 36 L.
Thus Option C gives the correct answer to the question.