Particles in a gas are far apart compared to a solid or liquid, allowing it not to have a definitive shape or volume. This also means that gases can fill any container and be easily compressed.
Methanol is prepared by reacting Carbon monoxide and Hydrogen gas,
CO + 2 H₂ → CH₃OH
Calculating Moles of CO:
According to equation,
32 g (1 mole) of CH₃OH is produced by = 1 Mole of CO
So,
3.60 × 10² g of CH₃OH is produced by = X Moles of CO
Solving for X,
X = (3.60 × 10² g × 1 Mole) ÷ 32 g
X = 11.25 Moles of CO
Calculating Moles of H₂:
According to equation,
32 g (1 mole) of CH₃OH is produced by = 2 Mole of H₂
So,
3.60 × 10² g of CH₃OH is produced by = X Moles of H₂
Solving for X,
X = (3.60 × 10² g × 2 Mole) ÷ 32 g
X = 22.5 Moles of H₂
Result:
3.60 × 10² g of CH₃OH is produced by reacting 11.25 Moles of CO and 22.5 Moles of H₂.
Answer:
p = 260 kilogram/cubic meter
Explanation:
ρ = 
= 
= 0.26 gram/milliliter
= 260 kilogram/cubic meter
Even though two grams seemed to disappear or vanish, the law of conversation of mass still holding true. Mercuric oxide, when heated, forms a gas of mercury and oxygen. During the investigation, some gas could have escaped or evaporated.