Answer:
159 mg caffeine is being extracted in 60 mL dichloromethane
Explanation:
Given that:
mass of caffeine in 100 mL of water = 600 mg
Volume of the water = 100 mL
Partition co-efficient (K) = 4.6
mass of caffeine extracted = ??? (unknown)
The portion of the DCM = 60 mL
Partial co-efficient (K) = 
where;
solubility of compound in the organic solvent and
= solubility in aqueous water.
So; we can represent our data as:
÷ 
Since one part of the portion is A and the other part is B
A+B = 60 mL
A+B = 0.60
A= 0.60 - B
4.6=
÷ 
4.6 = 
4.6 ×
=
4.6 B
= 0.6 - B
2.76 B = 0.6 - B
2.76 + B = 0.6
3.76 B = 0.6
B = 
B = 0.159 g
B = 159 mg
∴ 159 mg caffeine is being extracted from the 100 mL of water containing 600 mg of caffeine with one portion of in 60 mL dichloromethane.
Answer:
I don't have the number of cubes in each bag, but whichever bag had the most cubes would have the most kinetic energy as it falls
Answer:
Explanation:
Proteins are a class of macromolecules that perform a diverse range of functions for the cell. They help in metabolism by providing structural support and by acting as enzymes, carriers, or hormones. The building blocks of proteins (monomers) are amino acids.
The basic units for density is

and any get of units that has those units in the proper place can be considered a density unit. The ones that has those specifically are A, B, E and F
Answer:
8.73
Explanation:
when you are adding or subtracting numbers, the sigfig (significant figure) is based on how many numbers after the decimal. with this info, we can see that 15.67 has 2 sigfigs and 6.943 has 3 sigfigs. when you subtract normally, you would get 8.727, which has 3 sigfigs, so you would round the last 7 up to get 8.73 with 2 sigfigs!
also it is to 2 sigfigs because we know that we go by the least number of sigfigs. hope this helped!