There are several information's already given in the question. Based on the information's provided, the answer can be easily deduced.
V1 = 25 ml
= 25/1000 liter
= 0.025 liter
V2 = 18 ml
= 18/1000 liter
= 0.018 liter
M2 = 1.0 M
M1 = ?
Then
M1V1 = M2V2
M1 = M2V2/V1
= (1 * 0.018)/0.025
= 0.72 M
From the above deduction, it can be easily concluded that the correct option among all the options that are given in the question is the first option or option "A". I hope that this is the answer that has actually come to your help.
Answer:
While weathering and erosion are similar processes, they are not synonymous. Weathering involves the breakdown of rocks and minerals on Earth, whereas erosion involves the removal of soil and rock materials.
The volume of the buffer solution having a ph value is calculated by henderson's hasselbalch equation.
Buffer solution is water based solution which consists of a mixture containing a weak acid and a conjugate base of the weak acid. or a weak base and conjugate acid of a weak base.it is a mixture of weak acid and a base. The pH of the buffer solution is determined by the expression of the henderson hasselbalch equation.
pH=pKa + log [salt]/[acid]
Where, pKa =dissociation constant , A- = concentration of the conjugate base, [HA]= concentration of the acid. Here, a buffer solution contains 0.403m acetic acid and 250 ml is added in order to prepare a buffer with a ph of 4.750. Putting all the values in the henderson hasselbalch equation we find the pH of the buffer solution.
To learn more about hendersons hasselbalch equation please visit:
brainly.com/question/13423434
#SPJ4
Answer:
669.48 kJ
Explanation:
According to the question, we are required to determine the heat change involved.
We know that, heat change is given by the formula;
Heat change = Mass × change in temperature × Specific heat
In this case;
Change in temperature = Final temp - initial temp
= 99.7°C - 20°C
= 79.7° C
Mass of water is 2000 g ( 2000 mL × 1 g/mL)
Specific heat of water is 4.2 J/g°C
Therefore;
Heat change = 2000 g × 79.7 °C × 4.2 J/g°C
= 669,480 joules
But, 1 kJ = 1000 J
Therefore, heat change is 669.48 kJ
Answer:
yahh
Explanation:
a precipitation reaction is a reaction that yields an insoluble product—a precipitate—when two solutions are mixed.