The number of moles of oxygen required to generate 28 moles of water from the reaction is 14 moles
<h3>Balanced equation </h3>
2H₂ + O₂ —> 2H₂O
From the balanced equation above,
2 moles of water were obtained from 1 mole of oxygen
<h3>How to determine the mole of oxygen needed </h3>
From the balanced equation above,
2 moles of water were obtained from 1 mole of oxygen
Therefore,
28 moles of water will be obtained from = 28 / 2 = 14 moles of oxygen
Thus, 14 moles of oxygen are needed for the reaction
Learn more about stoichiometry:
brainly.com/question/14735801
The solution would be like this for this specific problem:
<span>Given:
H2 = </span><span>2.6 atm
CL2 = 3.14 atm</span>
<span>
pressure H2 = 2.6 - x
pressure Cl2 = 3.14 - x
<span>pressure HBr = 2x = 1.13
x = 1.13 / 2 = 0.565
<span>pressure H2 = 2.6 - 0.565 = 2.035
pressure Br2 = 3.14 - 0.565 = 2.575
Kp = (1.13)^2 / 2.035 x 2.575</span></span></span>
= 1.2769 / (5.240125)
= 0.24367739319195629875241525726963
= 0.244
<span>Therefore, the Kp for the reaction at the given temperature
is 0.244.
To add, </span>the hypothetical pressure of a gas if
it alone occupied the whole volume of the original mixture at the same
temperature is called the partial pressure or Kp.
The correct answer is B. balance
Answer:
Ha is more acidic than Hb because loss of Ha forms a resonance-stabilized conjugate base.
Explanation:
The carbon atom that is next to the carbonyl group in pentan-2-one is known as the alpha carbon atom, this carbon atom bears the Ha, the alpha hydrogen atoms.
Ha is more acidic than Hb because, loss of Ha leads to the formation of a resonance stabilized enolate ion. This resonance stabilization of the ion formed makes loss of Ha an easier process than loss of Hb, hence the answer above.