Answer:
Choices A, B, and C are correct.
Explanation:
Let us look at each of the choices one by one:
A. It is a vector
Yes. Velocity is a vector, or it's a speed with direction.
B. It is the change in displacement divided by the change in time.
Yes. The velocity can be written as

where
is the displacement—a vector quantity.
C. It can be measured in meters per second.
Yes. The units of velocity are m/s, but also with a unit vector indicating the direction.
D. It is the slope of the acceleration vs. time graph.
Nope. The velocity is the slope of displacement vs. time graph.
Hence, only choices A, B, and C are correct.
Answer:
Distance = 16.9 m
Explanation:
We are given;
Power; P = 70 W
Intensity; I = 0.0195 W/m²
Now, for a spherical sound wave, the intensity in the radial direction is expressed as a function of distance r from the center of the sphere and is given by the expression;
I = Power/Unit area = P/(4πr²)
where;
P is the sound power
r is the distance.
Thus;
Making r the subject, we have;
r² = P/4πI
r = √(P/4πI)
r = √(70/(4π*0.0195))
r = √285.6627
r = 16.9 m
Answer: well you get it for energy i think right
Explanation:
Answer:
1, their atoms have the same number of valence electron. because valence electron determine the group of elements.
Acceleration=9.81m/s^2
initial velocity=0m/s
time=.28s
We have to find final velocity.
The equation we use is
Final velocity=initial velocity+acceleration x time
Vf=0m/s+(9.81m/s^2)(.28s)
Vf=2.7468m/s
We would round this to:
Vf (final velocity)=2.7m/s