To solve this problem, we must remember about the law of
conservation of momentum. The initial momentum mist be equal to the final
momentum, that is:
m1 v1 + m2 v2 = (m1 + m2) v’
where v’ is the speed of impact
Since we are not given the masses of each car m1 and m2,
so let us assume that they are equal, such that:
m1 = m2 = m
Which makes the equation:
m v1 + m v2 = (2 m) v’
Cancelling m and substituting the v values:
50 + 48 = 2 v’
2 v’ = 98
v ‘ = 49 km/h
<span>The speed of impact is 49 km/h.</span>
Inertia- a tendency to do nothing or to remain unchanged
lovely question hope 7 solve it
Explanation:
Answer:
The perimeter of the rectangle is 60 units.
Explanation:
The perimeter of a rectangle is given by the equation P = 2L + 2W. With W = 12 units and L = 18 units, substituting the values in the equation above:
P = 2(18 units) + 2(12 units)
P = 36 units + 24 units
P = 60 units
The net force acting on the object perpendicular to the table is
∑ F[perp] = F[normal] - mg = 0
where mg is the weight of the object. Then
F[normal] = mg = (15 kg) (9.8 m/s²) = 147 N
The maximum magnitude of static friction is then
0.40 F[normal] = 58.8 N
which means the applied 40 N force is not enough to make the object start to move. So the object has zero acceleration and does not move.