Answer:
dy/dx = -1/
Step-by-step explanation:
y = 1/x
dy/dx = d/dx(1/x)
=> dy/dx = d/dx(
)
=> dy/dx = -
=> dy/dx = -1/
A) 5000 m²
b) A(x) = x(200 -2x)
c) 0 < x < 100
Step-by-step explanation:
b) The remaining fence, after the two sides of length x are fenced, is 200-2x. That is the length of the side parallel to the building. The product of the lengths parallel and perpendicular to the building is the area of the playground:
A(x) = x(200 -2x)
__
a) A(50) = 50(200 -2·50) = 50·100 = 5000 . . . . m²
__
c) The equation makes no sense if either length (x or 200-2x) is negative, so a reasonable domain is (0, 100). For x=0 or x=100, the playground area is zero, so we're not concerned with those cases, either. Those endpoints could be included in the domain if you like.
Option C:
is the possible expressions for length, width and height of the prism.
Explanation:
The volume of the rectangular prism is 
To determine the length, width and height of the rectangular prism, let us factor the expression.
Thus, factoring 5x from the expression, we have,

Let us break the expression
into two groups, we get,
![5x[\left(12 x^{2}+8 x\right)+(21 x+14)]](https://tex.z-dn.net/?f=5x%5B%5Cleft%2812%20x%5E%7B2%7D%2B8%20x%5Cright%29%2B%2821%20x%2B14%29%5D)
Factoring 4x from the term
, we get,
![5x[4 x(3 x+2)+(21x+14)]](https://tex.z-dn.net/?f=5x%5B4%20x%283%20x%2B2%29%2B%2821x%2B14%29%5D)
Similarly, factoring 7x from the term
, we get,
![5x[4 x(3 x+2)+7(3x+2)]](https://tex.z-dn.net/?f=5x%5B4%20x%283%20x%2B2%29%2B7%283x%2B2%29%5D)
Now, let us factor out
, we get,

Hence, the possible expressions for length, width and height of the prism is 
Therefore, Option C is the correct answer.