Answer:
At the equivalence point, equal amounts of H+ and OH– ions will combine to form H2O, resulting in a pH of 7.0 (neutral). The pH at the equivalence point for this titration will always be 7.0, note that this is true only for titrations of strong acid with strong base.
Explanation:
Answer:
The new temperature of the water bath 32.0°C.
Explanation:
Mass of water in water bath ,m= 8.10 kg = 8100 g ( 1kg = 1000g)
Initial temperature of the water = 
Final temperature of the water = 
Specific heat capacity of water under these conditions = c = 4.18 J/gK
Amount of energy lost by water = -Q = -69.0 kJ = -69.0 × 1000 J
( 1kJ=1000 J)




The new temperature of the water bath 32.0°C.
Answer: Option (a) is the correct answer.
Explanation:
A decomposition reaction is defined as a reaction where a compound dissociates into two or more atoms.
For example, 
Whereas a chemical reaction in which two reactants combine together to result in the formation of a compound is known as a synthesis reaction.
For example,
is a synthesis reaction.
Thus, we can conclude that the statement chemical reaction A, because the reactant is a compound identifies the decomposition reaction and describes a substance is involved.
It is called convection. When warm air, or current, moves up and disperse outwards as cold air, or current, moves into the warmer region.
Answer: 6.162g of Ag2SO4 could be formed
Explanation:
Given;
0.255 moles of AgNO3
0.155 moles of H2SO4
Balanced equation will be given as;
2AgNO3(aq) + H2SO4(aq) -> Ag2SO4(s) + 2HNO3(aq)
Seeing that 2 moles of AgNO3 is required to react with 1 moles of H2SO4 to produce 1 mole of Ag2SO4,
Therefore the number of moles of Ag2SO4 produced is given by,
n(Ag2SO4) = 0.255 mol of AgNO3 ×
[0.155mol H2SO4 ÷ 2 mol AgNO3] x
[ 1 mol Ag2SO4 ÷ 1 mol H2SO4]
= 0.0198 mol of Ag2SO4.
mass = no of moles x molar mass
From literature, molar mass of Ag2SO4 = 311.799g/mol.
Thus,
Mass = 0.0198 x 311.799
= 6.162g
Therefore, 6.162g of Ag2SO4 could be formed