they are both types of passive transport which means they require no energy. They both work with the concentration gradient which means they go from a high concentration area to a low concentration area. The differences are simple diffusion just goes though the membrane of a cell while facilitated diffusion uses a protein channel
Simple diffusion: it is the process where molecules move from a area of high concentration to an are of lower concentration. There is no energy needed in simple diffusion. For example when sodium is highly concentration in a cell, it moves outside of the cell where sodium is less concentration. it takes no energy as simple diffusion is random and molecules move according to their concentration.
<span>
</span>
Answer:
More than three decade the temperature of earth is increasing equally by the rate of 0.8 Celsius (1.4 Fahrenheit). It is going to be very harmful for the human being as well animals. The global warming is the main reason and hole in the ozone layer had been the cause of increasing the temperature of the earth. Humans are also involved in cause in temperature of earth by cutting forests and making land suitable for residence and not planting more trees instead of the cut trees.
Answer:
156 Hydrogen atoms
Explanation:
<u>Any acyclic alkane has a molecular formula that can be expressed as</u>:
CₙH₂ₙ₊₂
Where <em>n</em> is any integer and the number of carbon atoms. For example, Propane has 3 carbon atoms, this means it would have [2*3+2] 8 hydrogen atoms, resulting with a formula of C₃H₈.
An acyclic alkane with 77 carbon atoms would thus have:
2*77 + 2 = 156 hydrogen atoms
Answer:
The temperature associated with this radiation is 0.014K.
Explanation:
If we assume that the astronomical object behaves as a black body, the relation between its <em>wavelength</em> and <em>temperature</em> is given by Wien's displacement law.

where,
λmax is the wavelength at the peak of emission
b is Wien's displacement constant (2.89×10⁻³ m⋅K)
T is the absolute temperature
For a wavelength of 21 cm,
