Answer:
135°
Step-by-step Explanation:
==>Given:
An inscribed quadrilateral ABCD with,
m<A = (3x +6)°
m<C = (x + 2)°
==>Required:
measure of angle A
==>Solution:
First, let's find the value of x.
Recall that the opposite angles in any inscribed quadrilateral in a circle are supplementary.
Therefore, this means m<A + m<C = 180°
Thus, (3x+6) + (x+2} = 180
3x + 6 + x + 2 = 180
Collect like terms:
3x + x + 6 + 2 = 180
4x + 8 = 180
Subtract 8 from both sides:
4x + 8 - 8 = 180 - 8
4x = 172
Divide both sides by 4:
4x/4 = 172/4
x = 43
We can now find m<A = (3x + 6)°
m<A = 3(43) + 6
= 129 + 6
measure of angle A = 135°
900x300=270,000 plus 2 would equal 270,002.4 devided by 3-2001 would equal 87,999.8
Answer:
Mean and Variance of the number of defective bulbs are 0.5 and 0.475 respectively.
Step-by-step explanation:
Consider the provided information,
Let X is the number of defective bulbs.
Ten light bulbs are randomly selected.
The likelihood that a light bulb is defective is 5%.
Therefore sample size is = n = 10
Probability of a defective bulb = p = 0.05.
Therefore, q = 1 - p = 1 - 0.05 = 0.95
Mean of binomial random variable: 
Therefore, 
Variance of binomial random variable: 
Therefore, 
Mean and Variance of the number of defective bulbs are 0.5 and 0.475 respectively.
Answer: hope this helps
Step-by-step explanation: A is 3.2 x 100 = 320, 4.1 x 400 = 1,640, 2.7 x 600 = 1,620
You need to write the entire function: y = f(x) = 2x + 6.
Here the input quantity is x, and the output is y (or f(x)).