<u>Answer:</u>
The probability of getting two good coils when two coils are randomly selected if the first selection is replaced before the second is made is 0.7744
<u>Solution:</u>
Total number of coils = number of good coils + defective coils = 88 + 12 = 100
p(getting two good coils for two selection) = p( getting 2 good coils for first selection )
p(getting 2 good coils for second selection)
p(first selection) = p(second selection) = 
Hence, p(getting 2 good coil for two selection) = 
First term: a1 = 151
common difference: d = -14 (we decrease by 14 each time, eg, 151-14 = 137)
nth term of this arithmetic sequence is...
an = a1+d(n-1)
an = 151+(-14)(n-1)
an = 151-14n+14
an = -14n+165
This will be used in the formula below
Sn = n*(a1+an)/2
<span>Sn = n*(151+(-14n+165))/2
</span><span>S26 = 26*(151+(-14*26+165))/2 ... replace every n with 26
</span>S26 = -624
The final answer here is choice C) -624
<span>
</span>
Answer:
All three functions have the same minimum
Step-by-step explanation:
.55 is the answer. I hope this helped a great deal!