Answer:
-2,4
Step-by-step explanation:
i think
Answer:
x=-9,y=-4
Step-by-step explanation:
2x-3y=-6...(1)
-2x-2y=26...(2)
To solve we will have to eliminate one of the given variables, the variable to be eliminated is x
And it can be done by adding up (1) and (2)
It gives
-5y=20
Divide both sides by-5
y=-4
Then substitute the value of y into (1)
2x-3(-4)=-6
2x+12=-6
Substrate 12 from both sides
2x=-18
Divide both sides by 2
x=-9
Therefore x gives -9 and y gives-4
The answer might be D I don’t understand either
Solution:
Vertical angles are a pair of opposite angles formed by intersecting lines. re vertical angles. Vertical angles are always congruent.
These two angles (140° and 40°) are Supplementary Angles because they add up to 180°:
Notice that together they make a straight angle.
Hence,
From the image
The following pairs form vertical angles
![\begin{gathered} \angle1=\angle3(vertical\text{ angles)} \\ \angle2=\angle4(vertical\text{ angles)} \\ \angle5=\angle7(vertical\text{ angles)} \\ \angle6=\angle6(vertical\text{ angles)} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cangle1%3D%5Cangle3%28vertical%5Ctext%7B%20angles%29%7D%20%5C%5C%20%5Cangle2%3D%5Cangle4%28vertical%5Ctext%7B%20angles%29%7D%20%5C%5C%20%5Cangle5%3D%5Cangle7%28vertical%5Ctext%7B%20angles%29%7D%20%5C%5C%20%5Cangle6%3D%5Cangle6%28vertical%5Ctext%7B%20angles%29%7D%20%5Cend%7Bgathered%7D)
Hence,
One pair of the vertical angles is ∠1 and ∠3
Part B:
Two angles are said to be supplementary when they ad together to give 180°
Hence,
From the image,
The following pairs are supplementary angles
![\begin{gathered} \angle5+\angle6=180^0(supplementary\text{ angles)} \\ \angle5+\angle8=180^0(supplementary\text{ angles)} \\ \angle7+\angle8=180^0(supplementary\text{ angles)} \\ \angle6+\angle7=180^0(supplementary\text{ angles)} \\ \angle1+\angle2=180^0(supplementary\text{ angles)} \\ \angle1+\angle4=180^0(supplementary\text{ angles)} \\ \angle2+\angle3=180^0(supplementary\text{ angles)} \\ \angle3+\angle4=180^0(supplementary\text{ angles)} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cangle5%2B%5Cangle6%3D180%5E0%28supplementary%5Ctext%7B%20angles%29%7D%20%5C%5C%20%5Cangle5%2B%5Cangle8%3D180%5E0%28supplementary%5Ctext%7B%20angles%29%7D%20%5C%5C%20%5Cangle7%2B%5Cangle8%3D180%5E0%28supplementary%5Ctext%7B%20angles%29%7D%20%5C%5C%20%5Cangle6%2B%5Cangle7%3D180%5E0%28supplementary%5Ctext%7B%20angles%29%7D%20%5C%5C%20%5Cangle1%2B%5Cangle2%3D180%5E0%28supplementary%5Ctext%7B%20angles%29%7D%20%5C%5C%20%5Cangle1%2B%5Cangle4%3D180%5E0%28supplementary%5Ctext%7B%20angles%29%7D%20%5C%5C%20%5Cangle2%2B%5Cangle3%3D180%5E0%28supplementary%5Ctext%7B%20angles%29%7D%20%5C%5C%20%5Cangle3%2B%5Cangle4%3D180%5E0%28supplementary%5Ctext%7B%20angles%29%7D%20%5Cend%7Bgathered%7D)
Hence,
One pair of supplementary angles is ∠5 and ∠6
Answer:
The sprinkler can spread water 18 feet away.
Step-by-step explanation:
We are given the following in the question:
Area formed by watering pattern = 1,017.36 square feet
We have to find the how far the sprinkler spread the water.
The sprinkler covers a circular area. We need to find the radius of this circular area to find the how far the sprinkler spread the water.
Area of circle =
![A = \pi r^2](https://tex.z-dn.net/?f=A%20%3D%20%5Cpi%20r%5E2)
where r is the radius of the circle.
Putting values, we get,
![1017.36 = 3.14 r^2\\\\r^2 = \dfrac{1017.36}{3.14}\\\\r^2 = 324\\r = \sqrt{324} = 18\text{ feet}](https://tex.z-dn.net/?f=1017.36%20%3D%203.14%20r%5E2%5C%5C%5C%5Cr%5E2%20%3D%20%5Cdfrac%7B1017.36%7D%7B3.14%7D%5C%5C%5C%5Cr%5E2%20%3D%20324%5C%5Cr%20%3D%20%5Csqrt%7B324%7D%20%3D%2018%5Ctext%7B%20feet%7D)
Thus, the sprinkler can spread water 18 feet away.