Answer:
Magnetic force, F = 0.24 N
Explanation:
It is given that,
Current flowing in the wire, I = 4 A
Length of the wire, L = 20 cm = 0.2 m
Magnetic field, B = 0.6 T
Angle between force and the magnetic field, θ = 30°. The magnetic force is given by :


F = 0.24 N
So, the force on the wire at an angle of 30° with respect to the field is 0.24 N. Hence, this is the required solution.
Answer:
<em>at</em><em> </em><em>rest</em><em> </em><em>and</em><em> </em><em>in</em><em> </em><em>motion</em>
Explanation:
<em>The</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>inertia</em><em> </em><em>applies</em><em> </em><em>to</em><em> </em><em>objects</em><em> </em><em>at</em><em> </em><em>rest</em><em> </em><em>and</em><em> </em><em>in</em><em> </em><em>motion</em>
Answer:
d = 10.076 m
Explanation:
We need to obtain the velocity of the ball in the y direction
Vy = 24.5m/s * sin(35) = 14.053 m/s
To obtain the distance, we use the formula
vf^2 = v0^2 -2*g*d
but vf = 0
d = -vo^2/2g
d = (14.053)^2/2*(9.8) = 10.076 m
Using the formula F = m*a. where F is the force, m is the mass and a is the acceleration you can use it for each. As long as there are no other forces towards the body in both cases :
F = m*a
F = 50*3
F = 150 N
Answer:
Explanation:
The answer is a priest or a moulana