Answer:
Tight junctions - prevent liquid from seeping between cells
Desmosomes - act as rivets to hold adjacent cells together when epithelial tissue moves
Gap junctions - allow movement of cytosol, ions, and small molecules between animal cells
Plasmodesmata - openings through the cell walls of plant cells that allow adjacent cells to share materials
Explanation:
1) Tight junctions are one of the cell junctions found in animal cells. Tight junctions function to prevent the flow of liquid materials between cells.
2) Desmosomes are another type of cell junctions whose function is to form a connection between two adjacent cells. The structure formed by this connection confers strength upon the tissues involved.
3) Gap junctions are the most commonly found cell junctions found in animal cells that connects adjacent cells allowing the passage of cytosol, ions and other small molecules in them from one adjacent cell to another.
4) Plasmodesmata is a cell junction found in plant cells. They are small openings lying across the cell wall of plant cells whose function is to connect the cells and facilitate the movement of materials from one cell to another.
The orca, or killer whale, for example, is actually the largest member of the dolphin family. Dolphins are by far more prevalent than porpoises. Most scientists agree that there are 32 dolphin species (plus five closely related species of river dolphin) and only six porpoise species.
I really hope this answer helps you out! It makes my day helping people like you and giving back to the community that has helped me through school! If you could do me a favor, if this helped you and this is the very best answer and you understand that all of my answers are legit and top notch. Please mark as brainliest! Thanks and have a awesome day!
Answer:
In double-stranded DNA, the molecular double-helix shape is formed by two linear sugar-phosphate backbones that run opposite each other and twist together in a helical shape. The sugar-phosphate backbone is negatively charged and hydrophilic, which allows the DNA backbone to form bonds with water.
Answer:
25% colorblind daughter: 25% colorblind son: 25% carrier daughters with normal vision: 25% normal son.
Explanation:
The genotype of a color-blind man is X^cY and the genotype of the heterozygous carrier female is X^cX. A cross between X^cY and X^cX would produce a progeny in following ratio=
25% colorblind daughter: 25% colorblind son: 25% carrier daughters with normal vision: 25% normal son.
Therefore, the couple is likely to have 50% normal son and 50% affected son. Likewise, the couple is likely to have 50% normal daughters and 50% colorblind daughters.