Answer:
The length of the wire = 352.66 feet.
Explanation:
A copper refinery produces a copper ingot weighing 150 lb. If the copper is drawn into wire whose diameter is 9.50 mm, how many feet of copper can be obtained from the ingot? The density of copper is 8.94 g/cm3. (Assume that the wire is a cylinder whose volume is V = πr2h, where r is the radius and h is its height or length.)
Step 1: Convert lb to kg
150 lb = 68.0389 kg
Step 2: Calculate volume of copper
Volume = mass / density
Volume = 68038.9 grams / 8.94 g/cm³
Volume = 7610.6 cm³ Cu
Step 3: Calculate length of wire
The diameter of the wire is 9.50 mm, so the radius is half of that (4.75 mm), or 0.475 cm.
The total "volume" of the wire is πr²h = (π)*(0.475 cm)²(h) = 0.708h = 7610 cm^3
7610 = 0.708h
h = 10749 cm = length of wire
The length of the wire = 352.66 feet.
<u><em>Answer: Chemical reaction, a process in which one or more substances, the reactants, are converted to one or more different substances, the products.</em></u>
Explanation:
Answer:
25.7 kJ/mol
Explanation:
There are two heats involved.
heat of solution of NH₄NO₃ + heat from water = 0
q₁ + q₂ = 0
n = moles of NH₄NO₃ = 8.00 g NH₄NO₃ × 1 mol NH₄NO₃/80.0 g NH₄NO₃
∴ n = 0.100 mol NH₄NO₃
q₁ = n * ΔHsoln = 0.100 mol * ΔHsoln
m = mass of solution = 1000.0 g + 8.00 g = 1008.0 g
q₂ = mcΔT = 58.0 g × 4.184 J°C⁻¹ g⁻¹ × ((20.39-21)°C) = -2570.19 J
q₁ + q₂ = 0.100 mol ×ΔHsoln – 2570.19 J = 0
ΔHsoln = +2570.19 J /0.100 mol = +25702 J/mol = +25.7 kJ/mol
Boiling point elevation is given as:
ΔTb=iKbm
Where,
ΔTb=elevation in the boiling point
that is given by expression:
ΔTb=Tb (solution) - Tb (pure solvent)
Here Tb (pure solvent)=118.1 °C
i for CaCO3= 2
Kb=2.93 °C/m
m=Molality of CaCO₃:
Molality of CaCO₃=Number of moles of CaCO₃/ Mass of solvent (Kg)
=(Given Mass of CaCO3/Molar mass of CaCO₃)/ Mass of solvent (Kg)
=(100.0÷100 g/mol)/0.4
= 2.5 m
So now putting value of m, i and Kb in the boiling point elevation equation we get:
ΔTb=iKbm
=2×2.93×2.5
=14.65 °C
boiling point of a solution can be calculated:
ΔTb=Tb (solution) - Tb (pure solvent)
14.65=Tb (solution)-118.1
Tb (solution)=118.1+14.65
=132.75