Answer:
2
Step-by-step explanation:
So I'm going to use vieta's formula.
Let u and v the zeros of the given quadratic in ax^2+bx+c form.
By vieta's formula:
1) u+v=-b/a
2) uv=c/a
We are also given not by the formula but by this problem:
3) u+v=uv
If we plug 1) and 2) into 3) we get:
-b/a=c/a
Multiply both sides by a:
-b=c
Here we have:
a=3
b=-(3k-2)
c=-(k-6)
So we are solving
-b=c for k:
3k-2=-(k-6)
Distribute:
3k-2=-k+6
Add k on both sides:
4k-2=6
Add 2 on both side:
4k=8
Divide both sides by 4:
k=2
Let's check:
:


I'm going to solve
for x using the quadratic formula:







Let's see if uv=u+v holds.

Keep in mind you are multiplying conjugates:



Let's see what u+v is now:


We have confirmed uv=u+v for k=2.
Answer:
μ ≈ 2.33
σ ≈ 1.25
Step-by-step explanation:
Each person has equal probability of ⅓.
![\left[\begin{array}{cc}X&P(X)\\1&\frac{1}{3}\\2&\frac{1}{3}\\4&\frac{1}{3}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7DX%26P%28X%29%5C%5C1%26%5Cfrac%7B1%7D%7B3%7D%5C%5C2%26%5Cfrac%7B1%7D%7B3%7D%5C%5C4%26%5Cfrac%7B1%7D%7B3%7D%5Cend%7Barray%7D%5Cright%5D)
The mean is the expected value:
μ = E(X) = ∑ X P(X)
μ = (1) (⅓) + (2) (⅓) + (4) (⅓)
μ = ⁷/₃
The standard deviation is:
σ² = ∑ (X−μ)² P(X)
σ² = (1 − ⁷/₃)² (⅓) + (2 − ⁷/₃)² (⅓) + (4 − ⁷/₃)² (⅓)
σ² = ¹⁴/₉
σ ≈ 1.25
Answer:
2 l think
Step-by-step explanation:
Answer: B) -3
Step-by-step explanation:
X<-11/3 if u divide -11/3 = is about -3.6666
Answer:
Yes it is parallelogram because diagonals bisect each other.