Answer:
<h3>A. 1 hour</h3>
Step-by-step explanation:
If one cleaning company's cost can be calculated by the expression 75 + 50x, where x is the amount of hours they spend cleaning and another cleaning company's cost can be calculated using the expression 50 + 75x, then to calculate how long each company will have to clean to cost the same amount, we will equate both expression of the company cost and solve for x as shown;
On equating:
75 + 50x, = 75x + 50
collect like terms'
50x-75x = 50-75
-25x = -25
divide both sides by -25
-25x/-25 = -25/-25
x = 1
hence the number of hours each company will have to clean to cost the same amount is 1 hour
So lets get to the problem
<span>165°= 135° +30° </span>
<span>To make it easier I'm going to write the same thing like this </span>
<span>165°= 90° + 45°+30° </span>
<span>Sin165° </span>
<span>= Sin ( 90° + 45°+30° ) </span>
<span>= Cos( 45°+30° )..... (∵ Sin(90 + θ)=cosθ </span>
<span>= Cos45°Cos30° - Sin45°Sin30° </span>
<span>Cos165° </span>
<span>= Cos ( 90° + 45°+30° ) </span>
<span>= -Sin( 45°+30° )..... (∵Cos(90 + θ)=-Sinθ </span>
<span>= Sin45°Cos30° + Cos45°Sin30° </span>
<span>Tan165° </span>
<span>= Tan ( 90° + 45°+30° ) </span>
<span>= -Cot( 45°+30° )..... (∵Cot(90 + θ)=-Tanθ </span>
<span>= -1/tan(45°+30°) </span>
<span>= -[1-tan45°.Tan30°]/[tan45°+Tan30°] </span>
<span>Substitute the above values with the following... These should be memorized </span>
<span>Sin 30° = 1/2 </span>
<span>Cos 30° =[Sqrt(3)]/2 </span>
<span>Tan 30° = 1/[Sqrt(3)] </span>
<span>Sin45°=Cos45°=1/[Sqrt(2)] </span>
<span>Tan 45° = 1</span>
She bought 5.5 pounds of cherries
explanation-
88 divided by 16 would be 5.5
Notice that if you go forward, the common ratio is 5. Each new term is found by mult. the previous term by 5.
If, on the other hand, you go backwards (terms decreasing), then you divide a term to find what the previous term was.
Here, divide 1 by 5 to find the first term. It's 1/5.
Answer:
<em>x = 30.2 units</em>
Step-by-step explanation:
<u>Trigonometric Ratios</u>
The ratios of the sides of a right triangle are called trigonometric ratios.
Selecting any of the acute angles, it has an adjacent side and an opposite side. The trigonometric ratios are defined upon those sides and the hypotenuse.
The given right triangle has an angle of measure 51° and its adjacent leg has a measure of 19 units. It's required to calculate the hypotenuse of the triangle.
We use the cosine ratio to calculate x:


Solving for x:


x = 30.2 units