Answer:
480/(x+60) ≤ 7
Step-by-step explanation:
We can use the relations ...
time = distance/speed
distance = speed×time
speed = distance/time
to write the required inequality any of several ways.
Since the problem is posed in terms of time (7 hours) and an increase in speed (x), we can write the time inequality as ...
480/(60+x) ≤ 7
Multiplying this by the denominator gives us a distance inequality:
7(60+x) ≥ 480 . . . . . . at his desired speed, Neil will go no less than 480 miles in 7 hours
Or, we can write an inequality for the increase in speed directly:
480/7 -60 ≤ x . . . . . . x is at least the difference between the speed of 480 miles in 7 hours and the speed of 60 miles per hour
___
Any of the above inequalities will give the desired value of x.
Answer:
95% Confidence interval: (0.8449,0.9951)
Step-by-step explanation:
We are given the following in the question:
Sample size, n = 50
Number of times the dog is right, x = 46
95% Confidence interval:
Putting the values, we get:
(0.8449,0.9951) is the required 95% confidence interval for the proportion of times the dog will be correct.
Answer:
=6 units squared
Step-by-step explanation:
area=1/2h(a+b)
=1/2×2(4+2)
=6
Answer:

Step-by-step explanation:
To solve this, we are using the average rate of change formula:

where
is the average rate of change
is the first point
is the second point
is the function evaluated at the first point
is the function evaluated at the second point
We want to know the average rate of change of the function
form x = -3 to x = 0, so our first point is -3 and our second point is 0. In other words,
and
.
Replacing values







We can conclude that the average rate of change of the exponential equation form x = -3 to x = 0 is 
Answer:
2
Step-by-step explanation:
If you toss a fair coin three times, these are the possible results.
HHH
HHT
HTH
HTT <--------- one Heads, two Tails
THH
THT <--------- one Heads, two Tails
TTH
TTT
Answer: 2