Answer:
Accelerating to top speed, deaccelerating to finish line.
Step-by-step explanation:
If the runner kept a constant speed of 11 mph for the whole duration of his run (32 minutes), the distance he would have covered is:
This means that, in order to run the full 6.2 miles, the runner needs to reach a speed over 11 mph. Assume he starts from rest, while accelerating the runner reaches, and the surpasses, the 11 mph mark. Since his speed at the finish line is zero, the runner has to deaccelerate from his current running speed (which should be higher than 11 mph), passing through 11 mph and reaching zero at the finish line.
Let's see -
Follow the directions below to get your answer -
0.75 × 68 = 51
51 + 68 = 119
So, 119 is your answer
68 increased by 75% is 119.
↑ ↑ ↑ Hope this helps! :D
Answer:
E. -0.723
Since the p value is very high we don't have enough evidence to conclude that the true mean for the lengths is different from 6 cm.
Step-by-step explanation:
Information provided
represent the sample mean for the length
represent the sample standard deviation
sample size
represent the value that we want to test
represent the significance level
t would represent the statistic
represent the p value for the test
System of hypothesis
We need to conduct a hypothesis in order to check if the lathe is in perfect adjustment (6cm), then the system of hypothesis would be:
Null hypothesis:
Alternative hypothesis:
since we don't know the population deviation the statistic is:
(1)
Replacing in formula (1) we got:
E. -0.723
P value
The degrees of freedom are given by:
Since is a two tailed test the p value would be:
Since the p value is very high we don't have enough evidence to conclude that the true mean for the lengths is different from 6 cm.
Answer:the answer is (0, 4).
Step-by-step explanation: