Answer:
Both objects will undergo the same change in velocity
Explanation:
m = Mass of the Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 m
m = Mass of object
Any object which is falling has only the acceleration due to gravity.

The acceleration due to gravity on Earth is 9.81364 m/s²
So, the speeds of the objects will change at an equal rate of 9.81364 m/s² but the change will be negative when an object is thrown up.
Hence, both objects will undergo the same change in velocity.
Answer:
if the frequency is double, the wavelength is only half as long
Explanation:
Answer: The correct answer is "No".
Explanation:
Gravity: It is the force which causes object to fall on the earth. It is the force which attracts bodies towards each other.
Potential difference: It is defined as the potential acting between the two points. The work done in moving the unit positive charge from one location to the another location.
The potential difference in battery is caused by the electrodes. There are two terminals in battery: Negative terminal which is at lower potential and Positive terminal which is at higher potential. It forces the electrons to flow in the circuit which constitutes the current.
The gravity and the potential difference have no relation between them.
Therefore, gravity have no effect on the potential difference of a battery.
Answer:
Positively charged particle trajectories always follow electric field lines because the electric force on a positively charged particle is in the same direction as the electric field.
Explanation:
For any positive charge the electric field emerges radially outwards and it goes radially inwards for the negative charges.
- From the theory of electric field lines we know that they never intersect each other, either they get merged when the sources are unlike or they repel when the sources are alike. In other words the electric field lines align in the same direction as that of the field.
- So, when a positive charge is released into the an electric field they follow the direction of the field lines because they too have their field lines emerging radially outwards and hence these lines align in the direction of the field.
The wavelength of the standing wave at fourth harmonic is; λ = 0.985 m and the frequency of the wave at the calculated wavelength is; f = 36.84 Hz
Given Conditions:
mass of string; m = 0.0133 kg
Force on the string; F = 8.89 N
Length of string; L = 1.97 m
1. To find the wavelength at the fourth normal node.
At the fourth harmonic, there will be 2 nodes.
Thus, the wavelength will be;
λ = L/2
λ = 1.97/2
λ = 0.985 m
2. To find the velocity of the wave from the formula;
v = √(F/(m/L)
Plugging in the relevant values gives;
v = √(8.89/(0.0133/1.97)
v = 36.2876 m/s
Now, formula for frequency here is;
f = v/λ
f = 36.2876/0.985
f = 36.84 Hz
Read more about Harmonics of standing waves at; brainly.com/question/10274257
#SPJ4