Sarah's acceleration is 
Explanation:
The force of kinetic friction acting on Sarah has a magnitude which is given by:

where
is the coefficient of kinetic friction
m is Sarah's mass
g is the acceleration of gravity
Moreover, according to Newton's second law of motion, we know that the net force on Sarah is equal to its mass times its acceleration:

where a is the acceleration
Since the force of friction is the only force acting on Sarah, we can say that the net force is equal to the force of friction, therefore:

where the negative sign is due to the fact that the force of friction has a direction opposite to the motion of Sarah. Solving for a, we find

And substituting the following values:
(coefficient of friction)
(acceleration of gravity)
we find:

Learn more about acceleration and forces:
brainly.com/question/11411375
brainly.com/question/1971321
brainly.com/question/2286502
brainly.com/question/2562700
#LearnwithBrainly
Answer:
(a) 1.58 V
(b) 0.0126 Wb
(c) 0.0493 V
Solution:
As per the question:
No. of turns in the coil, N = 400 turns
Self Inductance of the coil, L = 7.50 mH =
Current in the coil, i =
A
where

Now,
(a) To calculate the maximum emf:
We know that maximum emf induced in the coil is given by:

![e = L\frac{d}{dt}(1680)cos[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20L%5Cfrac%7Bd%7D%7Bdt%7D%281680%29cos%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
![e = - 7.50\times 10^{- 3}\times \frac{\pi}{0.0250}\times \frac{d}{dt}(1680)sin[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20-%207.50%5Ctimes%2010%5E%7B-%203%7D%5Ctimes%20%5Cfrac%7B%5Cpi%7D%7B0.0250%7D%5Ctimes%20%5Cfrac%7Bd%7D%7Bdt%7D%281680%29sin%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
For maximum emf,
should be maximum, i.e., 1
Now, the magnitude of the maximum emf is given by:

(b) To calculate the maximum average flux,we know that:

(c) To calculate the magnitude of the induced emf at t = 0.0180 s:


According to the given statement:
- The frequency response does not change, which is the first thing we notice.
- The new resistance at the resonance point causes a reduction in the circuit's current flow.
- Z = R + R₂
<h3>The definition of series circuits:</h3>
electrical circuit. The path that the entire current takes as it passes through each component makes up a series circuit. Branching is used in parallel circuits to divide the current and limit the amount that flows through each branch.
<h3>How does a series circuit operate?</h3>
According to this definition, there are three principles of series circuits: all parts share the same current, resistances add up to a larger total resistance, and voltage drops add up to a larger total voltage. In the definition of a series circuit, all of these guidelines have their origin.
<h3>According to the given information:</h3>
The impedance of a series circuit is
Z₀² = R² + (X
-X
) ²
The initial resistance impedance shifts to when we add another resistor to the series
Z² = (R + R₂) ² + (X
- X
) ²
Let's examine this sentence.
- The frequency response remains unchanged, which is the first thing we notice.
- The new resistance at the resonance point causes the circuit's current to decrease.
Z = R + R₂
To know more about electrical circuit visit:
brainly.com/question/1922668
#SPJ4
It produces only virtual images is the answer
The work-energy principle states that the work done by all the non-conservative forces acting on an object (or system of objects) causes a change in the total mechanical energy of the object or system.
What is the work-energy principle?
The work-energy principle states that the total work done on a system is equal to the change in kinetic energy of the system. It is given as:
W.D = ΔK.E
= K.E₁ - K.E₂
where K.E₁ is the initial kinetic energy of the system
K.E₂ is the final kinetic energy of the system
What is meant by non-conservative forces?
Non-conservative forces as the name suggests are not conserved i.e. these forces cause a loss of mechanical energy from the system. A prime example of non-conservative forces is friction.
The total mechanical energy of the system is the sum of the potential energy and kinetic energy that the system contains. This energy is conserved and follows the work-energy theorem.
Learn more about work and energy here:
<u>brainly.com/question/17290830</u>
#SPJ4