It’s 4 because a coiled springs is closely spaced then widen
Gravitational energy is a form of potential energy because it is dependent on the mass of an object and needs to be calculated for the specific object.
Under the assumption that the tires do not change in volume, apply Gay-Lussac's law:
P/T = const.
P = pressure, T = temperature, the quotient of P/T must stay constant.
Initial P and T values:
P = 210kPa + 101.325kPa
P = 311.325kPa (add 101.325 to change gauge pressure to absolute pressure)
T = 25°C = 298.15K
Final P and T values:
P = ?, T = 0°C = 273.15K
Set the initial and final P/T values equal to each other and solve for the final P:
311.325/298.15 = P/273.15
P = 285.220kPa
Subtract 101.325kPa to find the final gauge pressure:
285.220kPa - 101.325kPa = 183.895271kPa
The final gauge pressure is 184kPa or 26.7psi.
Answer:
12 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 7.6 kg
Distance (d) = 6 m
Velocity (v) = 5 m/s
Force (F) = 2 N
Workdone (Wd) =.?
Workdone can be defined as the product of force and distance moved in the direction of the force. Mathematically, it is expressed as:
Workdone = Force × distance
Wd = F × d
With the above formula, we can obtain the workdone as follow:
Distance (d) = 6 m
Force (F) = 2 N
Workdone (Wd) =.?
Wd = F × d
Wd = 2 × 6
Wd = 12 J
Thus, the workdone is 12 J