Explanation:
A Giant Gas Cloud. A star begins life as a large cloud of gas.
A Protostar Is a Baby Star.
The T-Tauri Phase.
Main Sequence Stars.
Expansion into Red Giant.
Fusion of Heavier Elements.
Supernovae and Planetary Nebulae.
<h3>
Answer:</h3>
1257.45 L
<h3>
Explanation:</h3>
We are given;
- Initial volume of Helium gas, V1 as 806 L
- Initial temperature of Helium gas,T1 as 20.9°C
- Initial pressure of Helium gas, P1 as 753 mmHg
- Pressure of Helium at the altitude 6.8 km, P2 as 417 mmHg
- Temperature of Helium gas at the altitude 6.8 Km, T2 as -19.1°C
But, K = °C + 273.15
Therefore, T1 = 294.05 K and T2 = 254.05 K
- We are required to calculate the new volume of the balloon at 6.8 km.
- To determine the new volume we are going to use the combined gas law.
- According to the combined gas law,

Thus, rearranging the formula;



Therefore, the volume of the balloon at an altitude of 6.8 km is 1257.45 L
Two moles because one moles would be 6.02×10 23 atoms 2 moles would equal twice that number of atoms
PH3
Also known as phosphine
The original material has decayed 75%
<h3>Further explanation</h3>
Given
two half-life
Required
The decayed sample
Solution
General formulas used in decay:

t = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
t = 2 x t 1/2
Input the value :
The amount of Nt = 25% No