Answer:
179 L of CO2
Explanation:
Given the equation of the reaction;
C2H6(g) + 7/2 O2(g) -------> 2CO2(g) + 3H2O(g)
Now 1 mole of ethane yields 2 moles of CO2 from the balanced reaction equation
1 mole of a gas occupies 22.4 L volume so,
22.4 L of ethane yields 44.8 L of CO2
89.5 L of ethane yields 89.5 * 44.8/22.4 = 179 L of CO2
The change in the velocity = 4 m/s
Acceleration = 4 m/s²
<h3>Further explanation</h3>
Given
vo = initial velocity = 4 m/s
vf = final velocity = 8 m/s
t = 1 s
Required
The change in the velocity
Acceleration
Solution
the change in velocity =

Acceleration = ratio of a change in velocity and the time

Input the value :

pretty sure its B thank me later
Answer:
Explanation:
To calculate the cell potential we use the relation:
Eº cell = Eº oxidation + Eº reduction
Now in order to determine which of the species is going to be oxidized, we have to remember that the more the value of the reduction potential is negative, the greater its tendency to be oxidized is. In electrochemistry we use the values of the reductions potential in the tables for simplicity because the only thing we need to do is change the sign of the reduction potential for the oxized species .
So the species that is going to be oxidized is the Aluminium, and therefore:
Eº cell = -( -1.66 V ) + 0.340 V = 5.06 V
Equally valid is to write the equation as:
Eº cell = Eº reduction for the reduced species - Eº reduction for the oxidized species
These two expressions are equivalent, choose the one you fell more comfortable but be careful with the signs.
Molecules move faster in a warm glass of water they move slower in a cold glass of water