Answer:
thx
Step-by-step explanation:
<span>Exactly 8*pi - 16
Approximately 9.132741229
For this problem, we need to subtract the area of the square from the area of the circle. In order to get the area of the circle, we need to calculate its radius, which will be half of its diameter. And the diameter will be the length of the diagonal for the square. And since the area of the square is 16, that means that each side has a length of 4. And the Pythagorean theorem will allow us to easily calculate the diagonal. So:
sqrt(4^2 + 4^2) = sqrt(16 + 16) = sqrt(32) = 4*sqrt(2)
Therefore the radius of the circle is 2*sqrt(2).
And the area of the circle is pi*r^2 = pi*(2*sqrt(2)) = pi*8
So the area of the rest areas is exactly 8*pi - 16, or approximately 9.132741229</span>
I'm pretty sure that you answered it correctly. 10-U
Answer:
46
Step-by-step explanation:
∠DAC ≅ ∠ACB because they are opposite interior angles where transversal AC crosses parallel lines BC and AD.
∠DAC ≅ ∠CAB because they are corresponding angles of the similar triangles ΔABC and ΔACD.
Hence ∠ACB ≅ ∠CAB and ΔABC is isosceles with side lengths both being 9. The corresponding side lengths of ΔACD are 12, meaning the base of ΔABC, segment AC, is 12. The scale factor of ΔACD to ΔABC is then 12:9 = 4:3, so the base AD of ΔACD is (4/3)×12 = 16.
So, the side lengths of the trapezoid are ...
- AB = 9
- BC = 9
- CD = 12
- DA = 16
and the perimeter is 9 +9 +12 +16 = 46 units.
The answer is C if it was multiple choice