1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolezko [41]
3 years ago
6

A coach took 3/1/2 hours to travel a distance of 240 km from Kuala Lumpur to Cameron Highlands. It travelled part of the journey

at an average speed of 60km/h and the rest of the journey at 75km/h. Calculate the distance it travelled at 60km/h.
Mathematics
1 answer:
Marina CMI [18]3 years ago
5 0

Step-by-step explanation:

He travelled 108 km in speed of 65km/h.

You might be interested in
Answer before 1:00 i will mark you brainliest
Alecsey [184]

Answer:

the circumference of the circle= 36pi units  

Step-by-step explanation:


5 0
3 years ago
Help with num 3 please. thanks​
Alja [10]

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

4 0
3 years ago
The final balance in an account that has a monthly fee and automatic monthly deposits is given by the expression. The initial ac
trapecia [35]
150x represents the monthly deposit, and -4.99 represents the monthly fee.
6 0
4 years ago
Read 2 more answers
What is the base of the trapezoid with an area of 150 a height of 10 and a base of 14?
slavikrds [6]
The formula for the area of a trapezoid is:

A= (a+b)/2*h

A=150
h=10
b=14
a=?

So we need to solve for a. Let's plug in the values that we do know...

A= (a+b)/2*h
150=(a+14)/2*10
150=(a/2+14/2)*10
150=(a/2+7)*10
Divide both sides by 10
15=a/2+7
subtract 7 from both sides
8=a/2
multiply both sides by 2
16=a

The other base is 16
3 0
3 years ago
Read 2 more answers
A store has a display case with cherry, peach,
STatiana [176]

Answer:

56 grape

Step-by-step explanation:

160 fruit chews

25% are cherry, 40% are peach.....25 + 40 = 65%....so 65% of the fruit chews are NOT grape....meaning (100 - 65) = 35 % ARE grape.

so 35% of all the fruit chews are grape

35% of 160 = 0.35 * 160 = 56 are grape <===

5 0
3 years ago
Other questions:
  • Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.
    7·2 answers
  • The scale of a map is 1 in. :500 mile. City A is 650 miles from City B. How far is it's distance on the map?
    8·1 answer
  • Find the sine, cosine, and tangent of 360 degrees
    9·1 answer
  • Six candles cost $15.00. How many candles can you buy for $22.50?
    10·2 answers
  • What is the measure of x in degrees ?
    10·1 answer
  • Name the triangles that are classified by angles
    10·2 answers
  • What’s the value of X?
    14·1 answer
  • Find the component form of the vector that translates P(4,5) to p'.
    7·1 answer
  • PLEASEE HELP.!! ILL GIVE BRAINLIEST.!! *EXTRA POINTS* DONT SKIP:((
    8·1 answer
  • Solve the inequality. Help appreciated
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!