Answer:
The present age of son is 7
Step-by-step explanation:
Let the son age be x
One year ago
Son's age = x - 1
Therefore man's age = 8(x-1) =8x - 8
Now man's age = x^2
Difference between both ages if man =1 years
So
x^2 -(8x-8) = 1
x^2-8x + 8-1 =0
x^2- 8x + 7 = 0
x^2 - 7x -x + 7 = 0
X(x-7) - 7 ( x - 7) = 0
(x - 1) ( x - 7) = 0
x = 1, 7
But son cannot be 1 years
Therefore ,
x = 7
SO,
age of son is <em>7</em>
age of father is x×7=<em>49</em>
Answer:
-59
Step-by-step explanation:
g(-5) = -4*(-5)+6 = 26
f(g(-5)) = f(26) = -2*26 - 7 = -59
Answer:
no
Step-by-step explanation:
A proportional relationship must go through the point ( 0,0). This does not go through the origin so this is not proportional
16.45 is less than 16.454, Because 16.45 doesnt have a extra # at the end of the #, Add the pretend 0 to 16.45 and compare 0 to 4, And 4 is greater than 0
1² + 3² + 4² + 4(n - 1)² = ¹/₃n(2n - 1)(2n + 1)
1² + 3² + 4² + (2n - 2)² = ¹/₃n(2n - 1)(2n + 1)
1 + 9 + 16 + (2n - 2)(2n - 2) = ¹/₃n(2n(2n + 1) - 1(2n + 1))
10 + 16 + (2n(2n - 2) - 2(2n - 2)) = ¹/₃n(2n(2n) + 2n(1) - 1(2n) - 1(1) 16 + (2n(2n) - 2n(2) - 2(2n) + 2(2)) = ¹/₃n(4n² + 2n - 2n - 1)
26 + (4n² - 4n - 4n + 4) = ¹/₃n(4n² - 1)
26 + (4n² - 8n + 4) = ¹/₃n(4n² - 1)
26 + 4n² - 8n + 4 = ¹/₃n(4n²) - ¹/₃n(1)
4n² - 8n + 4 + 26 = 1¹/₃n³ - ¹/₃n
4n² - 8n + 30 = 1¹/₃n³ - ¹/₃n
+ ¹/₃n + ¹/₃n
4n² - 7²/₃n + 30 = 1¹/₃n³
-1¹/₃n³ + 4n² - 7²/₃n + 30 = 0
-3(-1¹/₃n³ + 4n² - 7²/₃n + 30) = -3(0)
-3(-1¹/₃n³) - 3(4n²) - 3(-7²/₃n) - 3(30) = 0
4n³ - 12n² + 23n - 90 = 0