Answer:
Use the distance formula on both points AC and AB.
<em>Distance formula is this</em><em>:</em>
<em>\begin{gathered}d=\sqrt{(x2-x1)^2+(y2-y1)^2} \\\\d=\sqrt{(1--5)^2+(8--7)^2} \\\\d=\sqrt{(6)^2+(15)^2} \\\\d=\sqrt{36+225} \\\\d=\sqrt{261} \\\\\end{gathered}d=(x2−x1)2+(y2−y1)2d=(1−−5)2+(8−−7)2d=(6)2+(15)2d=36+225d=261</em>
Distance for AC is 16.16
Now do the same with the numbers for AB and get the distance of 5.39
2. To get the area, use the formula 1/2 x base x height
AB is the base and AC is the height.
1/2 x 16.16 x 5.39 = 43.55
the answer is 43.5
Answer: The sum of the measures of the interior angles of a polygon is always 180(n-2) degrees, where n represents the number of sides of the polygon. The sum of the measures of the exterior angles of a polygon is always 360
Answer:

Step-by-step explanation:
The logistic differential equation is as follows:

In this problem, we have that:
, which is the carring capacity of the population, that is, the maximum number of people allowed on the beach.
At 10 A.M., the number of people on the beach is 200 and is increasing at the rate of 400 per hour.
This means that
when
. With this, we can find r, that is, the growth rate,
So




So the differential equation is:


According to his calculations, b has a 3/10 chance to win
One thousandths. make sure you add the ths because it is a decimal