Answer:
add all of them together (x and y’s) the divide the sum by the amt of numbers
Step-by-step explanation:
Let 's' represent the amount of sales.
Plan 1:
![\text{ \$700 + (4\% of s)}](https://tex.z-dn.net/?f=%5Ctext%7B%20%5C%24700%20%2B%20%284%5C%25%20of%20s%29%7D)
![\begin{gathered} \text{ \$700+(}\frac{\text{4}}{100}\times s) \\ \text{ \$700+(0.04}\times s)=\text{ \$700}+0.04s \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7B%20%5C%24700%2B%28%7D%5Cfrac%7B%5Ctext%7B4%7D%7D%7B100%7D%5Ctimes%20s%29%20%5C%5C%20%5Ctext%7B%20%5C%24700%2B%280.04%7D%5Ctimes%20s%29%3D%5Ctext%7B%20%5C%24700%7D%2B0.04s%20%5Cend%7Bgathered%7D)
Plan 2:
![12\text{ \% of s}](https://tex.z-dn.net/?f=12%5Ctext%7B%20%5C%25%20of%20s%7D)
![\begin{gathered} \frac{12}{100}\times s \\ 0.12\times s=0.12s \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B12%7D%7B100%7D%5Ctimes%20s%20%5C%5C%200.12%5Ctimes%20s%3D0.12s%20%5Cend%7Bgathered%7D)
Equating the two plans together and solving for the amount of sales,
![\begin{gathered} \text{Plan 2=Plan 1} \\ 0.12s=\text{ \$700+0.04s} \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BPlan%202%3DPlan%201%7D%20%5C%5C%200.12s%3D%5Ctext%7B%20%5C%24700%2B0.04s%7D%20%5C%5C%20%20%5Cend%7Bgathered%7D)
Collecting like terms,
![\begin{gathered} 0.12s-0.04s=\text{ \$700} \\ 0.08s=\text{\$700} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%200.12s-0.04s%3D%5Ctext%7B%20%5C%24700%7D%20%5C%5C%200.08s%3D%5Ctext%7B%5C%24700%7D%20%5Cend%7Bgathered%7D)
Divide both sides by 0.08,
![\begin{gathered} \frac{0.08s}{0.08}=\frac{\text{ \$700}}{0.08} \\ s=\text{ \$8750} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B0.08s%7D%7B0.08%7D%3D%5Cfrac%7B%5Ctext%7B%20%5C%24700%7D%7D%7B0.08%7D%20%5C%5C%20s%3D%5Ctext%7B%20%5C%248750%7D%20%5Cend%7Bgathered%7D)
Hence, the amount of sales is $8,750.
Answer:
X=128°
Step-by-step explanation:
Because an exterior angle of a triangle is equal to of the two opposite interior angle.
The sum of the exterior and interior angle is equal to 180°
In this case the part marked red = 90° because is a right angled triangle.
90+38=128
180- 128=52
180- 52=128
x=128.
Answer:x^3+y^3+x^2 y+y^2 x-xy
Step-by-step explanation:
X+y(x^2 +y^2)- X y
Expand the bracket
X^3 +xy^2 +yx^2 -xy