Answer:
16.791 grams
Explanation:
The density formula is:

Rearrange the formula for m, the mass. Multiply both sides of the equation by v.


The mass of the gold nugget can be found by multiplying the density and volume. The density is 19.3 grams per cubic centimeter and the volume is 0.87 cubic centimeters.

Substitute the values into the formula.


Multiply. Note that the cubic centimeters, or cm³ will cancel each other out.


The mass of the gold nugget is 16.791 grams.
Potential energy is stored energy. Kinetic energy involves movement.
If a ball is on the top of a hill, it has the most potential energy on the very top of the hill. The kinetic energy is also 0 at this point.
If the ball rolls down the hill, potential energy decreases while kinetic increases.
simple example
Answer:
Option (2) 2
Explanation:
NO3- + 4H+ + Pb → Pb2+ + NO2 + 2H2O
The equation above can be balance as follow:
There are 3 atoms of the left side and a total of 4 atoms on the right side. It can be balance by putting 2 in front NO3- and 2 in front of NO2 as shown below:
2NO3- + 4H+ + Pb → Pb2+ + 2NO2 + 2H2O
Now the equation is balanced.
The coefficient of NO2 is 2
When a sodium atom transfers an electron to a chlorine atom, forming a sodium cation (Na+) and a chloride anion (Cl-), both ions have complete valence shells, and are energetically more stable. The reaction is extremely exothermic, producing a bright yellow light and a great deal of heat energy.
Mass of methanol (CH3OH) = 1.922 g
Change in Temperature (t) = 4.20°C
Heat capacity of the bomb plus water = 10.4 KJ/oC
The heat absorbed by the bomb and water is equal to the product of the heat capacity and the temperature change.
Let’s assume that no heat is lost to the surroundings. First, let’s calculate the heat changes in the calorimeter. This is calculated using the formula shown below:
qcal = Ccalt
Where, qcal = heat of reaction
Ccal = heat capacity of calorimeter
t = change in temperature of the sample
Now, let’s calculate qcal:
qcal = (10.4 kJ/°C)(4.20°C)
= 43.68 kJ
Always qsys = qcal + qrxn = 0,
qrxn = -43.68 kJ
The heat change of the reaction is - 43.68 kJ which is the heat released by the combustion of 1.922 g of CH3OH. Therefore, the conversion factor is: