Answer:
he maximum frequency occurs when the denominator is minimum
f’= f₀ 
Explanation:
This is a doppler effect exercise, where the sound source is moving
f = fo
when the source moves towards the observer
f ’=f_o
Alexandrian source of the observer
the maximum frequency occurs when the denominator is minimum, for both it is the point of maximum approach of the two objects
f’= f₀ 
Answer:
the government's use and control of science. To clarify, I live in the U.S. I'm only interested in how the U.S. government dictates science. If you have any information or links that could educate me on this topic, I would be appreciative.
Explanation:
Answer:

Explanation:
R = Horizontal range of projectile = 75 m
v = Velocity of projectile = 37 m/s
g = Acceleration due to gravity = 
Horizontal range is given by

The angle at which the arrow is to be released is
.
Answer:
The energy entering, reflecting, absorbed, and emitted by the earth system are the components of the Earth's radiation budget.
Explanation:
I hope this helps also I hope you have a great day and a new year.
Answer:
(a): a = 0.4m/s²
(b): α = 8 radians/s²
Explanation:
First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):
a= (Vf-Vi)/t = (2m/s)/t
a: linear acceleration.
Vf: speed at the end of the ramp.
Vi: speed at the beginning of the ramp (zero).
d= (1/2)×a×t² = 5m
d: distance of the ramp (5m).
We replace the first equation in the second to determine the travel time on the ramp:
d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s
And the linear acceleration will be:
a = (2m/s)/5s = 0.4m/s²
Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:
perimeter = π×diameter = π×0.1m = 0.3142m
To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:
α = (0.4m/s²)/(0.05m) = 8 radians/s²
α: angular aceleration.