As the distance from a charged particle, "q", increases, the electric potential decreases.
<h3>
Electric potential between particles</h3>
The electric potential between particles is the work done in moving a unit charge from infinity to a certain point against the electrical resistance of the field.
V = Kq/r
where;
- K is Coulomb's constant
- q is the magnitude of the charge
- r is the distance between the charges
Thus, from the formula above, as the distance from a charged particle, "q", increases, the electric potential decreases.
Learn more about electric potential here: brainly.com/question/14306881
#SPJ1
I would think the answer is c.
Color aka the visible light spectrum
The average power supplied to the box by friction while it slows from 13 m/s to 11.5 m/s is 3.24 W.
<h3>Acceleration of the box</h3>
The acceleration of the box is calculated as follows;
vf² = vi² + 2as
a = (vf² - vi²)/2s
a = (11.5² - 13²) / (2 x 8.5)
a = -2.16 m/s²
<h3>Time of motion of the box</h3>
The time taken for the box to travel is calculated as follows;
a = (vf - vi)/t
t = (vf - vi) / a
t = (11.5 - 13) / (-2.16)
t = 0.69 s
<h3>Average power supplied by the friction</h3>
P = Fv
P = (ma)(vf - vi)
P = (1 x -2.16) x (11.5 - 13)
P = 3.24 W
Thus, the average power supplied to the box by friction while it slows from 13 m/s to 11.5 m/s is 3.24 W.
Learn more about average power here: brainly.com/question/19415290
#SPJ1