Answer:
F = m g sin theta force accelerating block
m a = m g sin theta
a = 9.8 sin 24 = 3.99 m/sec^2
Kinetic energy is related to velocity by:
KE = (1/2)mv^2
solve for mass m
10 = (1/2)m(10)^2
10 = (1/2)m(100)
10= 50m
10/50 = m
1/5 = m
at 20 km/hr
KE = (1/2)(1/5)(20)^2
KE = (1/10)(400)
KE = 40 J
Answer:
The law of conservation of momentum states that the total momentum of interacting objects does not <u>change</u>. This means the total momentum <u>before</u><u> </u>a collision or explosion is equal to the total momentum <u>after</u><u> </u>a collision or explosion.
Answer:
A simple machine consisting of an axle to which a wheel is fastened so that torque applied to the wheel winds a rope or chain onto the axle, yielding a mechanical advantage equal to the ratio of the diameter of the wheel to that of the axle.
Answer:
Explanation:
This is a simple gravitational force problem using the equation:
where F is the gravitational force, G is the universal gravitational constant, the m's are the masses of the2 objects, and r is the distance between the centers of the masses. I am going to state G to 3 sig fig's so that is the number of sig fig's we will have in our answer. If we are solving for the gravitational force, we can fill in everything else where it goes. Keep in mind that I am NOT rounding until the very end, even when I show some simplification before the final answer.
Filling in:
I'm going to do the math on the top and then on the bottom and divide at the end.
and now when I divide I will express my answer to the correct number of sig dig's:
6.45 × 10¹⁶ N