IMA = Ideal Mechanical Advantage
First class lever = > F1 * x2 = F2 * x1
Where F1 is the force applied to beat F2. The distance from F1 and the pivot is x1 and the distance from F2 and the pivot is x2
=> F1/F2 = x1 /x2
IMA = F1/F2 = x1/x2
Now you can see the effects of changing F1, F2, x1 and x2.
If you decrease the lengt X1 between the applied effort (F1) and the pivot, IMA decreases.
If you increase the length X1 between the applied effort (F1) and the pivot, IMA increases.
If you decrease the applied effort (F1) and increase the distance between it and the pivot (X1) the new IMA may incrase or decrase depending on the ratio of the changes.
If you decrease the applied effort (F1) and decrease the distance between it and the pivot (X1) IMA will decrease.
Answer: Increase the length between the applied effort and the pivot.
Answer:
a) p=0, b) p=0, c) p= ∞
Explanation:
In quantum mechanics the moment operator is given by
p = - i h’ d φ / dx
h’= h / 2π
We apply this equation to the given wave functions
a) φ =
.d φ dx = i k
We replace
p = h’ k
i i = -1
The exponential is a sine and cosine function, so its measured value is zero, so the average moment is zero
p = 0
b) φ = cos kx
p = h’ k sen kx
The average sine function is zero,
p = 0
c) φ =
d φ / dx = -a 2x
.p = i a g ’2x
The average moment is
p = (p₂ + p₁) / 2
p = i a h ’(-∞ + ∞)
p = ∞
The answer for this is 1200N
Answer:
42m/s
6.06s
Explanation:
To find the initial velocity and time in which the ball is fling over the ground you use the following formulas:

θ: angle = 45°
vo: initial velocity
g: gravitational constant = 9.8m/s^2
x_max: max distance = 180 m
t_max: max time
by replacing the values of the parameters and do vo the subject of the first formula you obtain:

with this value of vo you calculate the max time:

hence, the initial velocity of the ball is 42m/s and the time in which the ball is in the air is 6.06s
- - - - - - - - - - - - -- - - - - - - - - - - - - -
TRANSLATION:
Para encontrar la velocidad inicial y el tiempo en el que la pelota está volando sobre el suelo, use las siguientes fórmulas:
θ: ángulo = 45 °
vo: velocidad inicial
g: constante gravitacional = 9.8m / s ^ 2
x_max: distancia máxima = 180 m
t_max: tiempo máximo
reemplazando los valores de los parámetros y haciendo el tema de la primera fórmula que obtiene:
con este valor de vo usted calcula el tiempo máximo:
por lo tanto, la velocidad inicial de la pelota es de 42 m / sy el tiempo en que la pelota está en el aire es de 6.06 s