Answer:
Sheridan's Work is correct
Step-by-step explanation:
we know that
The lengths side of a right triangle must satisfy the Pythagoras Theorem

where
a and b are the legs
c is the hypotenuse (the greater side)
In this problem
Let

substitute

Solve for b





we have that
<em>Jayden's Work</em>


substitute and solve for c





Jayden's Work is incorrect, because the missing side is not the hypotenuse of the right triangle
<em>Sheridan's Work</em>


substitute

Solve for b





therefore
Sheridan's Work is correct
Answer:
1. reflection across x-axis
2. translation 6 units to the right and 3 units up (x+6,y+3)
Step-by-step explanation:
The trapezoid ABCD has it vertices at points A(-5,2), B(-3,4), C(-2,4) and D(-1,2).
First transformation is the reflection across the x-axis with the rule
(x,y)→(x,-y)
so,
- A(-5,2)→A'(-5,-2)
- B(-3,4)→B'(-3,-4)
- C(-2,4)→C'(-2,-4)
- D(-1,2)→D'(-1,-2)
Second transformation is translation 6 units to the right and 3 units up with the rule
(x,y)→(x+6,y+3)
so,
- A'(-5,-2)→E(1,1)
- B'(-3,-4)→H(3,-1)
- C'(-2,-4)→G(4,-1)
- D'(-1,-2)→F(5,1)
Answer:
Your first instinct might be to go ahead and add the x terms together, BUT this would be a bad thing to do! You cannot combine the x2 and 2x, because the first term has an exponent (2) and the second one does not have an exponent; therefore, you cannot add them together!
Step-by-step explanation: