Answer & Explanation:
a)
Lenz's law states that the direction of induced electric current is always such that, it opposes the change in magnetic flux.
In a drop ride, the hub on which we sit and are hung to is an electromagnet and there are many such magnets mounted on the columns of the support. what happens is these electromagnets (in support) generate a repulsive magnetic field with respect to the field generated by the hub solenoids. this results in lift generation till the top of ride. reaching the top, the bar solenoids are at their maximum repulsive force. Then the solenoids in column are set current less means electric supply is cut off. this makes you fall under the effect of gravity. by the time you are half way down, column solenoids are turned on again. As the hub solenoid approaches every single electromagnet in supporting columns. Due to change in magnetic field (with respect to lenz's law) an opposing current induces further providing resistance to the fall, this continues until the ride comes to rest completely. This is how it works.
c) In addition, highly compressive springs, dampers, viscous dampers, etc. could be used in its place.
but the above listed cannot provide a differential braking,
have a limited lifecycle,
will provide resistance during lift also,
require higher maintenance
From the first law of thermodynamics, we use the equation expressed as:
ΔH = Q + W
where Q is the heat absorbed of the system and W is the work done.
We calculate as follows:
ΔH = Q + W
ΔH = 829 J + 690 J = 1519 J
Hope this answers the question. Have a nice day.
Answer:
Both, potential energy and kinetic energy depends on mass. The higher the mass, the higher the energy. However, the difference is that potential energy depends on vertical height whereas kinetic energy depends on the velocity.
Explanation:
From the formula we can see that;
Potential Energy = mass* gravitational acceleration *vertical height.
Kinetic Energy = 0.5 * mass * (velocity)^2
Answer:
<h2>Ultraviolet Waves.</h2>
Explanation:
The Sun emits waves called "Solar Waves", which have a wavelengths between 160 and 400 nanometers. According to the electromagnetic spectrum, these waves are defined as Ultraviolet, which have a frequency around the order of
, which is really intense and high energy.
Therefore, the answer is Ultraviolet Waves.
I think it’s going to be the 2nd one