The displacement of the train after 2.23 seconds is 25.4 m.
<h3>
Resultant velocity of the train</h3>
The resultant velocity of the train is calculated as follows;
R² = vi² + vf² - 2vivf cos(θ)
where;
- θ is the angle between the velocity = (90 - 51) + 37 = 76⁰
R² = 8.81² + 9.66² - 2(8.81 x 9.66) cos(76)
R² = 129.75
R = √129.75
R = 11.39 m/s
<h3>Displacement of the train</h3>
Δx = vt
Δx = 11.39 m/s x 2.23 s
Δx = 25.4 m
Thus, the displacement of the train after 2.23 seconds is 25.4 m.
Learn more about displacement here: brainly.com/question/2109763
#SPJ1
Answer:
B. 6
Explanation:
i think... im in 7th grade and haven't really leaned this but im like 60% sure but i migjt be wrong
Motion energy is the sum of potential and kinetic energy in an object that is used to do work.
Answer:
2.295 eV
Explanation:
maximum wavelength, λ = 542 nm = 542 x 10^-9 m
The work function of the metal is defined as the minimum amount of energy falling on the metal so that the photo electrons just ejects the surface of metal.
where, h is the Plank's constant and c be the speed of light
h = 6.634 x 10^-34 Js
c = 3 x 10^8 m/s
Wo = 2.295 eV
Thus, the work function of this metal is 2.295 eV.