Hydrogen bonds are stronger than the dipole dipole attraction force present in any molecule.
<h3>What is bonding in molecules?</h3>
Bonding is a type of attraction force which is present between the different atoms or elements of any substance.
- Dipole dipole attraction force is a weak force as compared to the hydrogen bonding and present between any two oppositely charged atoms.
- Hydrogen bond is present between the hydrogen atom and more electronegative atoms like O, S, N and F.
Hence main difference is that hydrogen bond is only present between the hydrogen atom and more electronegative.
To know more about dipole-dipole force, visit the below link:
brainly.com/question/24197168
#SPJ4
Answer:
The glycosylation reaction or glycoside formation is an organic reaction in which the hemiacetal group of cyclists ketoses or aldoses turns into acetals, named glycosides. Reaction in the attached picture.
Explanation:
Carbohydrates can be found in an open-chain form or a cyclic form. For the second one, the carbonyl group of the aldehyde could react with the alcohol group of the molecule to form the cycle. As shown in the attached picture, the alcohol group of this cyclic form could react with an alcohol (like methanol) in acidic conditions to form an acetal. These compounds are stable at neutral and acidic conditions, but they hydrolyze at basic conditions. This reaction produces both acetals anomers (α and β) because the attack of the nucleophile (alcohol) could be from both sides. However, the most stable anomer will predominate.
Answer:
B. Cell Type
Explanation:
that is the answer i believe
Answer:
Mass = 157.5 g
Explanation:
Given data:
Mass of CO needed = ?
Mass of Fe formed = 209.7 g
Solution:
Chemical equation:
3CO + F₂O₃ → 2Fe + 3CO₂
Number of moles of Fe:
Number of moles = mass/ molar mass
Number of moles = 209.7 g/ 55.85 g/mol
Number of moles = 3.75 mol
Now we will compare the moles of iron and carbon monoxide.
Fe : CO
2 : 3
3.75 ; 3/2×3.75 = 5.625 mol
Mass of CO:
Mass = number of moles × molar mass
Mass = 5.625 mol × 28 g/mol
Mass = 157.5 g