I believe the correct answer is C.
Given the following functions below,

Factorising the denominators of both functions,
Factorising the denominator of f(x),

Factorising the denominator of g(x),

Multiplying both functions,
The answer is B-40.
It is an acute angle so it can not be 155 but the angle does not look like it is close to being 90 degrees so the answer has to be 40!
Hope this helps(can I get brainliest)
Answer:
(a) ¬(p→¬q)
(b) ¬p→q
(c) ¬((p→q)→¬(q→p))
Step-by-step explanation
taking into account the truth table for the conditional connective:
<u>p | q | p→q </u>
T | T | T
T | F | F
F | T | T
F | F | T
(a) and (b) can be seen from truth tables:
for (a) <u>p∧q</u>:
<u>p | q | ¬q | p→¬q | ¬(p→¬q) | p∧q</u>
T | T | F | F | T | T
T | F | T | T | F | F
F | T | F | T | F | F
F | F | T | T | F | F
As they have the same truth table, they are equivalent.
In a similar manner, for (b) p∨q:
<u>p | q | ¬p | ¬p→q | p∨q</u>
T | T | F | T | T
T | F | F | T | T
F | T | T | T | T
F | F | T | F | F
again, the truth tables are the same.
For (c)p↔q, we have to remember that p ↔ q can be written as (p→q)∧(q→p). By replacing p with (p→q) and q with (q→p) in the answer for part (a) we can change the ∧ connector to an equivalent using ¬ and →. Doing this we get ¬((p→q)→¬(q→p))
Answer:
Volume = 308
Step-by-step explanation:
Volume of a rectangular prism = Height * Width * Depth
Sub in the three values and solve
V = 11 * 7 * 4
V = 308