Answer:
answer is image
Step-by-step explanation:
Given:
![m\angle ABC=60](https://tex.z-dn.net/?f=m%5Cangle%20ABC%3D60)
To find:
The
.
Solution:
In circle B,
is central angle and
is inscribed angle from two points A and C.
According to central angle theorem, central angle is always twice of inscribed angle.
[Central angle theorem]
![60=2(m\angle ADC)](https://tex.z-dn.net/?f=60%3D2%28m%5Cangle%20ADC%29)
Divide both sides by 2.
![\dfrac{60}{2}=m\angle ADC](https://tex.z-dn.net/?f=%5Cdfrac%7B60%7D%7B2%7D%3Dm%5Cangle%20ADC)
![30=m\angle ADC](https://tex.z-dn.net/?f=30%3Dm%5Cangle%20ADC)
Therefore,
.
Answer:
2x² - 9x - 5
Step-by-step explanation:
Step 1: FOIL
2x² - 10x + x - 5
Step 2: Combine like terms
2x² - 9x - 5
Answer:
c) The reduced form of the given fraction ![\frac{24}{30} = \frac{4}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B24%7D%7B30%7D%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D)
Step-by-step explanation:
Here, the given expression is "24 over 30".
The given expression is is equivalent to ![\frac{24}{30}](https://tex.z-dn.net/?f=%5Cfrac%7B24%7D%7B30%7D)
Now by Prime Factorization:
24 = 2 x 2 x 2 x 3
30 = 2 x 3 x 5
⇒ The common factors in 24 and 30 is 2 x 3 = 6
So, ![\frac{24}{30} = \frac{2 \times 2 \times 2 \times 2 \times 3}{2 \times 3 \times 5} = \frac{6 \times 4}{6 \times 5} = \frac{4}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B24%7D%7B30%7D%20%20%3D%20%5Cfrac%7B2%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%203%7D%7B2%20%5Ctimes%203%20%5Ctimes%205%7D%20%20%20%3D%20%5Cfrac%7B6%20%5Ctimes%204%7D%7B6%20%5Ctimes%205%7D%20%20%20%3D%20%5Cfrac%7B4%7D%7B5%7D)
Hence the reduced form of the given fraction ![\frac{24}{30} = \frac{4}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B24%7D%7B30%7D%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D)