<em><u>Step</u></em><em><u>•</u></em><em><u>BY</u></em><em><u>•</u></em><em><u>Step</u></em><em><u> </u></em><em><u>Explanation</u></em><em><u>~</u></em><em><u>|</u></em>
<em><u> </u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em>
y=1.50
x=0.50
¹
1.50
1.59
______+
3.00
0.50
_____+
<em>3.50</em>
<h2>
<em><u>Answer</u></em><em><u>:</u></em><em><u>♡</u></em><em><u>~</u></em></h2>
<em><u>3.50</u></em>
<em><u>HOPE</u></em><em><u> </u></em><em><u>IT</u></em><em><u> </u></em><em><u>HELPSS</u></em>
When you reflect a diagonal over a line of symmetry, the diagonal will land perfectly on the other diagonal (and vice versa). This suggests that one diagonal is a mirror copy of the other.
Another way to put it: The vertex points of the rectangle will swap when we reflect over a line of symmetry. A diagonal is simply the opposite vertex points joined together. So this is why the diagonals swap places (because the vertices line up perfectly when you apply the reflection).
Are you solving the inequality
If a square has an area of 45 square units its side has a length of

units. Is that a perfect length? I don't know, but I know it's perfect for a square whose area is 45.
Answer:
If y(t) is the mass (in mg) remaining after t years, then y(t) = y(0) (0.5)^{t/T} = 400 (0.5)^{t /4}, where T is the half-life period and y(0) is the amount at t = 0 years (initial).
Then at t = 20:
y(20) = 400 (0.5)^{20 /4} = \text{12.5 mg}
Step-by-step explanation: