Answer:
Step-by-step explanation:
B = { x, y } = { } , { x }, { y }, { x, y }
C = { 1, 2, 8 } = { } , { 1 }, { 2 }, { 8 }, { 1, 2 }, { 1, 8}, { 2, 8}, { 1, 2, 8}
. E = { a } ={ } , { a }
2. { }, {x}, {y}, {x,y}
3. { }, {1}, {2},{8},{1,2},{1,8},{2,8},{1,2,8}
4. { }, {a}, {b}, {c}, {d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,b,c}, {a,c,d}, {a,b,d}, {b,c,d}, {a,b,c,d}
5. { }, {a}
D(9, 1)
A being the midpoint means its coordinates satisfy ...
A = (E + D)/2
Solving for D, we find ...
D = 2A -E
= 2(4, 5) -(-1, 9) = (2·4 +1, 2·5 -9)
D = (9, 1)
m=-32
-2=m/16
-2×16=m
-32=m
y=-3x/2
because gradient =-3/2
and u must use formula (y-y1) = m(x-x1)
B) Green
Bartelby